集合的含義及其表示教學設計
教學目标:
1.使學生理解集合的含義,知道常用集合及其記法;
2.使學生初步了解“屬于”關系和集合相等的意義,初步了解有限集、無限集、空集的意義;
3.使學生初步掌握集合的表示方法,并能正确地表示一些簡單的集合.
教學重點:
集合的含義及表示方法.
教學過程:
一、問題情境
1.情境.
新生自我介紹:介紹家庭、原畢業學校、班級.
2.問題.
在介紹的過程中,常常涉及像“家庭”、“學校”、“班級”、“男生”、“女生”等概念,這些概念與“學生×××”相比,它們有什麼共同的特征?
二、學生活動
1.介紹自己;
2.列舉生活中的集合實例;
3.分析、概括各集合實例的共同特征.
三、數學建構
1.集合的含義:一般地,一定範圍内不同的、确定的.對象的全體組成一個集合.構成集合的每一個個體都叫做集合的一個元素.
2.元素與集合的關系及符号表示:屬于,不屬于.
3.集合的表示方法:
另集合一般可用大寫的拉丁字母簡記為“集合A、集合B”.
4.常用數集的記法:自然數集N,正整數集N*,整數集Z,有理數集Q,實數集R.
5.有限集,無限集與空集.
6.有關集合知識的曆史簡介.
四、數學運用
1.例題.
例1 表示出下列集合:
(1)中國的直轄市;(2)中國國旗上的顔色.
小結:集合的确定性和無序性
例2 準确表示出下列集合:
(1)方程x2―2x-3=0的解集;
(2)不等式2-x<0的解集;
(3)不等式組 的解集;
(4)不等式組 2x-1≤-33x+1≥0的解集.
解:略.
小結:(1)集合的表示方法——列舉法與描述法;
(2)集合的分類——有限集⑴,無限集⑵與⑶,空集⑷
例3 将下列用描述法表示的集合改為列舉法表示:
(1){(x,)| x+ = 3,x N, N }
(2){(x,)| = x2-1,|x |≤2,x Z }
(3){| x+ = 3,x N, N }
(4){ x R | x3-2x2+x=0}
小結:常用數集的記法與作用.
例4 完成下列各題:
(1)若集合A={ x|ax+1=0}=,求實數a的值;
(2)若-3{ a-3,2a-1,a2-4},求實數a.
小結:集合與元素之間的關系.
2.練習:
(1)用列舉法表示下列集合:
①{ x|x+1=0};
②{ x|x為15的正約數};
③{ x|x 為不大于10的正偶數};
④{(x,)|x+=2且x-2=4};
⑤{(x,)|x∈{1,2},∈{1,3}};
⑥{(x,)|3x+2=16,x∈N,∈N}.
(2)用描述法表示下列集合:
①奇數的集合;②正偶數的集合;③{1,4,7,10,13}
五、回顧小結
(1)集合的概念——集合、元素、屬于、不屬于、有限集、無限集、空集;
(2)集合的表示——列舉法、描述法以及Venn圖;
(3)集合的元素與元素的個數;
(4)常用數集的記法.
六、作業
課本第7頁練習3,4兩題.
【的含義及其表示教學設計】相關文章:
高一數學集合的含義及其表示教學設計06-14
《集合的含義與表示》教學反思09-20
集合的含義與表示教學反思範文06-11
集合的含義與表示的說課稿07-12
面積的含義教學設計03-13
勵志的成語及其含義06-12
農業諺語及其含義03-23
《數的表示》教學設計03-09
《函數及其表示》說課稿11-29